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What is Sensitivity Analysis?

e Sensitivity Analysis (SA) is a way to order the input variables to a
model according to their relative importance to the model’s output.

® The results of SA can be used to inform us about:
— Optimization — Which inputs to gather more data on
— Uncertainty Quantification = — How to better control an experiment

® | ocal SA: local linear or under-resolved behavior can be misleading.

® Global SA: can be computationally expensive (use meta-modeling).

f(X1) f(X1) local global

Output
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We conduct sensitivity analyses with
DAKOTA and SimLab.

( Analysis: DAKOTA or SimLab

optimization, sensitivity analysis,
parameter estimation,

L uncertainty quantification

Input
parameters

Response
metrics

dakota.sandia.gov Computational Model (simulation)
Black box—any code: mechanics, circuits,

nuclear energy, biology, chemistry,...

simlab.jrc.ec.europa.eu

e DAKOTA has a generic interface to simulation software, contains advanced
methods, and can automate “parameter variation” studies, including:

— Sampling (LHS, quasi-MC, classical experimental designs)

— Dempster-Shafer evidence theory

— Stochastic expansion methods: Polynomial chaos, stochastic collocation
— Nested approaches for quantifying epistemic and aleatory uncertainties

e SimlLab is a development framework designed for Monte Carlo-based uncertainty
and sensitivity analysis. @ Sandia
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> ‘\A)rrelaﬁon and Variance-Based Decomposition
4-/'} (VBD) characterize the global sensitivity
of model outputs Y to model inputs X.

e Goal: to assess outputs for a specified range of inputs.

e Correlation analysis identifies the strength and direction of
a linear relationship between input and output.

e VBD identifies the fraction of the variance in the output that can be
attributed to an individual variable alone or with interaction effects.

— Main effect sensitivity S; is the VarX.[E(Y\Xi)l
fraction of the uncertainty in Y that Si = !
is due to input X, alone Yar)

— Total effect index T; is the fraction of E[Var(Y‘X )l _
the uncertainty in Y that is due to X, T. = ! oveloned

l .
and its interactions with other variables Var(Y) these ideas
— Calculation of §; and T, requires the evaluation of m-dimensional

____________________________

— The evaluation of these quantities is computationally intensive, as

replicated sets of samples are evaluated. @ Sanda
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P Meta-models provide an alternative
to sampling-based VBD.

e Build the meta-model using some of the data.
— This is reasonable for moderately high dimensional data
e Estimate the sensitivity indices using the meta-model.

— This can be done (i) with the same data used to construct the meta-
model or (ii) with data that was not used to construct the meta-model

e Meta-models can be used to generate confidence intervals
of the computed indices.

— These confidence intervals give a measure of the “variability” or
“uncertainty” in the computed indices.

e There are several different ways to construct the meta-models.
— “Regression surfaces” (regression and smoothing)
— Stochastic expansions (polynomial chaos, stochastic collocation)
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j;/-} Regression surface models are alternatives
to sampling-based approaches.

e SDP = State-Dependent Parameter Regression

— SDP modeling* is a class of non-parametric smoothing, first suggested by Young$, that
is similar to smoothing splines and kernel regression approaches but is performed
using recursive (non-numerical) Kalman filter and associated fixed interval smoothing.

— SDP is good for additive models and can adapt to local discontinuities, strong non-
linearity, and heteroskedasticity in the response.

e ACOSSO = Adaptive COmponent Selection and Smoothing Operator

— ACOSSO" is a multivariate smoothing-spline approach (COSSO%) that is augmented by a
weighted (wj), scaled (A) penalty function:

j w1 8 msif 4 G

— ACQOSSO is thought to perform best for a reasonably smooth underlying response.

D = # inputs

e DACE = Design and Analysis of Computer Experiments
— Gaussian Process emulator for the output responses.

§ Young, P. C. “The identification and estimation of nonlinear stochastic systems,” in t Storlie, C.B., Bondell, H.D., Reich, B.J., Zhang, H.H., “Surface estimation, variable
Nonlinear Dynamics and Statistics, A. |. Mees et al., eds., Birkhauser, Boston (2001). selection, and the nonparametric oracle property,” Stat. Sinica, to appear (2010).

= Katto, M., Pagano, A., Young, F. L., “State dependent parameter meta-modelling I Y. LinY., and H. Zhang, H., “"Component selection and smoothing in smoothing
and sensitivity analysis,” Comput. Phys. Comm., 177, pp. 863—876 (2007). spline analysis of variance models,” Ann. Stat., 34, pp. 2272-2297 (2006).
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Stochastic Expansion Methods provide
another alternative to sampling-based VBD.

e Stochastic expansion methods — Polynomial Chaos Expansion (PCE)
or Stochastic Collocation (SC) — produce functional representations
of stochastic variability.

e Sudret* (i) demonstrated that the sensitivity indices are explicit
functions of the stochastic expansion, and (ii) derived the PCE case.

— Once the PCE is obtained, sensitivity indices are calculated explicitly,
i.e., without additional sampling

e Tang$ derived the sensitivity indices as analytic functions of SC.
e Both of these techniques have been implemented in DAKOTA.

e This approach can be very efficient, since the calculation of
sensitivity indices does not require additional function evaluations.

* Sudret, B., “Global Sensitivity analysis using polynomial chaos expansion,” Rel. Engr. & Syst. Safety, 93, pp. 964—-979 (2008).

$Tang, G., laccarino, G., Eldred, M.S., "Global Sensitivity Analysis for Stochastic Collocation Expansion," paper AIAA-2010-2922
in Proceedings of the 12th AIAA Non-Deterministic Approaches Conference, Orlando, FL, 12-15 April 2010.
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We consider Sensitivity Analysis of
a shock tube problem.

F
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® |nitial state: (o,p,u,y) ={

(1.0, 1.0,0.0,1.4), 0sx<0.5 “Left’
(0.125,1.0,0.0,1.4), 0.5<x<1.0 “Right”

* Fix the left state; vary the right state; consider fixed #;,, = 0.2

e \We can evaluate the exact solution Shock

to this problem.
. 2 Rarefaction
® Examine the ,/

sensitivity near £ *5
the point (e), 4 Rarefaction
(a¥ t—
where the c Rarefaction
. . oTo}
solution varies... &

L Shock _ 05 O\Rarefacﬁon
Right Velocity

Shock Shock

) s
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_/-7 We fix the final time and the left state, but vary
both the right state and a numerical parameter.

Input Why?
N le Initial pressure on right Uncertainty in initial condition
§ 3 X, Initial velocity on right Uncertainty in initial condition
X Polytropic index y on right Uncertainty in material model
X, CFL parameter: ¢, At/Ax Numerical parameter

e From the self-similar nature of the solution, only one state need
be varied, not both: therefore, we vary only values on the right.

. . > v :
e Higher pressure, higher y — e S M Nominal
. < | ;
higher sound speeds and faster g g High'y
Wave propagation 0.5 1 15 0 0.5 1 1.5
>  L 1 | :
e 0<CFL<1 — stable oo S o | Nominal
< g 8 0.92 : ngh CFL
CFL > 1 — unstable Q* g .,

Sandia
15 National
Laboratories



| ' SAND2010-6795C

g
4/, The outputs are values at fixed locations.

® These outputs correspond to a experimental diagnostics.

* These outputs measure some quantity i
. [ . ' |
at a specific location. .{/
|
|
|
|
1
|
|

— We record the value at the end of the

Final

simulations, =0.2
. . | </
® |n this study, we examine two outputs:..| [
— Y, = specific internal energy at x = 1.4 —

— Y, =densityatx =1.16

x=1.16

x=1.4
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™~
*‘ We can evaluate the exact solution for all outputs,

e.g., Y, whichistheSIEat x=1.4.

® Y, is a simple output that X,, X, varying
X, fixed
we use as a test.

e No waves reach this Y, =

40

location, so the SIE does

SIE 5 |

not change from at initial
value.

— This value is a function of | “X3 T X
X, and Xj; only.
— Sensitivity indices should Output surface slice for the exact solution

show this dependence.
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The exact response surface for Y, , the density
atx =1.16, is quite different.

Flat regions mean that no Sharp “cliffs” mean shocks

waves have reached here
0.136 0.136 .
o 0.128 o 0.128 0.135 . 0.135
0.12 ! 0.12 o1 . s
0.112 0.112 .
0.104 - 0.104 0.125 : 0.125
. i 0.12 i 0.12
. 0.115 0.115
u&;g 0,2-9 ‘ ! | -
Xl o Xl e !7"7 Xl P
2 w2 o1 0 0.1 02 e T o o 02 12— o 0.1 02
X, X, varying X, X, X,

X, fixed e

X, increasing

0.136
0.128

0.12
0.112
0.104

. 0.9 pv1 ~ —, 13 X Y -
X, Xyvarying X, 3
X, fixed

X, increasing () i
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,/_/, We simulate this problem with the
- ALEGRA multi-physics code.

Shock and Multi-physics HEDP Theory and ICF Target Design Overview

e The ALEGRA suite of applications models shock and
high energy environments for solids, fluids, and
plasmas using a multi-material arbitrary Lagrangian-
Eulerian (ALE) multi-physics methodology.

e ALEGRA applications run on large, parallel, message-
passing architectures in 2-D and 3-D geometries.

ALEGRA Applications
e Armor Design and Analysis
e Shaped Charges & Explosively Formed Penetrators
e Railgun Design and Analysis
e Magnetohydrodynamics (MHD)
e Z-pinch, Inertial Confinement Fusion
® [sentropic Compression Experiments/Magnetic Flyers

’ Experiment
"I ALEGRA =5

Current (MA)
s
n
o
Velocity (km/s)

0 LonserL. "
23 2.4 2.6

Tmex1.es ®) Sandia

Isentropic Compressmn Magnetic Flyer Predicti Fa%:]rgglmes
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;/-7 The underlying equations in ALEGRA are
related to hyperbolic conservation laws.

e The fundamental equations are statements of conservation laws:

State 0" U ______________
+ div fU) = SU)—x € Q C R,
az- fg __)-‘ __g_——)-'\

F/ux function Source term

— Depending on the physics modeled, the state U may include, e.g.:
o Internal state variables from material strength models
o Magnetic field quantities for MHD simulations

— These are discretized on a hexahedral mesh in the Arbitrary Lagrangian-
Eulerian framework, amenable to general meshing and remapping.

* The gas dynamics equations are the “simplest” nonlinear

physics equations that form a basic part of the full set of
models in ALEGRA.

* This study is a prototype for the future analysis of problems
with more complicated physics. @ T
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The simulation response for Y, the density at
x = 1.16, is different from the exact response.

>

Surface is nosier —the noise increases

with X, , the CFL parameter. X, X, varying
X5, X, fixed
Simulation Simulation

X,=1.195

The shocks in the simulation are
not as sharp as the exact shocks

® For this problem, most simulation response surfaces

differ only slightly from the exact response surfaces. @ Sandia
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Meta-models

LHS Sampling

Full Factorial

A

A

Analytic VBD

Nl

P*We show results for estimators of the main (.S)
and total (7) sensitivity indices for several methods.

DACE 256 Gaussian process approach, 256 samples
ACOSSO 256 adaptive smoothing spline, 256 samples
SDP 256 non-parametric smoothing, 256 samples
analytic VBD, 6""-order, uniform distr., 1296 samples
196k sample, Sobol’/Saltelli estimates [,,goT,Zi;’;,‘,’;,’;,d”]
analytic VBD, 4th-order, uniform distr., 256 samples
6.e+4 samples, Latin Hypercube Sampling VBD

LHS 6000 6.e+3 samples, Latin Hypercube Sampling VBD

R-EXACT 160k 1.60e+5 Riemann (exact), “full factorial” VBD
R-EXACT-2.56M 2.56e+6 Riemann (exact), “full factorial” VBD
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% The sensitivity indices S and T for Y,

perform similarly for all approaches.

e As anticipated, Y, (SIE) depends strongly on X, (pg) and X; (yz)
e Sampling, meta-model, and “exact” results are all consistent.

Main Total
X_‘ J X.;
X3 X3
| El y1-LHS_6e3 K= B yi-LHS 6e3
X, O X o
2 o Ef 2 o Ef
O O
B y1-SDR256 [ i B y1-SDR256
B y1-ACOSS0256 B y1-ACOSS0256 [
B y1-DACE256 B y1-DACE256
B3 A-EXACT-160k B A-EXACT-160k
X A-EXACT-2.56M X B A-EXACT-2.56M
l M R-EXACT-160k 1 M R-EXACT-160k
M R-EXACT-2.56M M R-EXACT-2.56M
02 0 02 04 06 08 1 12 02 0 02 04 06 08 1 12
S
T
LHS 6000 ACOSSO 256 A-EXACT 160k  R-EXACT 160k

JRC 196k  SDP256  DACE256  A-EXACT-2.56M R-EXACT-2.56M
URY bt




} The sensitivity indices for Y, have

some unusual features.

e For Y, (final right p), LHS has different ranking, particularly
for 6.e+3 samples and esp. wrt X, (:) and X, (CFL).

Main Odd behavior... Total
I I
B 2LHs 6ed Is the sample é y2-LHS_6e3 E] jgﬁ@ﬁfiﬁb
& B 2cre T too Sma//?ﬁ W y2-Ef B AEXACT.256M
2 O M R-EXACT-160k
B " y2-SDR256 B y2-SDR256 m R-EXACT-2.56M_
B y2-ACOSS0256 || =~ A
. I.:Z'_EDXI;\(:C%-.Z‘JSSOK IIIIIIIIIIIIIIIIIII H
X3 g :-EXACT—2.56M X 3
M R-EXACT-160k
*5’ M R-EXACT-2.56M "5’
=N =3
A T s T g
. > Inter- <X,
What is action
happeny among
here? A these
X, inputs  [X,
7 . 1 1 1
0.2 0 02 04 06 038 1 1.2 0.2 0 02 04 06 08 | 1.2
S T
LHS 6000 ACOSSO 256 A-EXACT 160k  R-EXACT 160k

JRC196k  SDP256  DACE256  A-EXACT-2.56M R-EXACT-2.56M
URY iioraioes
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° Estimators of the main and total sensitivity
indicess converge under quasi-random sampling.

e Confidence intervals were
calculated with a bootstrap
technique.*

e Confidence intervals
decrease with increasing
number of model runs.

e The lower/upper bounds of the
main indices are wider than
those of the total indices.

e The estimator of the main
indices to have a larger
variance than the estimator
of the total indices.

§ Saltelli, A., P. Annoni, I. Azzini, F. Campolongo, M. Ratto, S. Tarantola,
“Variance based sensitivity analysis of model output. Design and estimator for
the total sensitivity index,” Comp. Physics Comm., 181, 259-270 (2010).

Main Total
u M
1.4 1 I
L
: )
Yy &
=3
% 5% %9 I A
. X ] X
Sample Size Sample Size m
4. 0.8 ma
§07» 3
2 i o gw Qi
Y, e =
2 2 2“' 03'
I Poa Z
-4 ‘0 02 04 [} 08 1 12 14 18 18 2 0.1 0“0 02 04 08 H‘E 1 12 14 1‘6 (‘E 2
0 L 2%10° T 0 2x105
Sample Size Sample Size
|)_(1 Init. Right p X3 Init. Right y

X, Init. Right u

W4 CFL parameter

* G.E.B. Archer, A. Saltelli, .M. Sobol’, “Sensitivity Measures, ANOVA-Like Tech-
niques and the Use of Bootstrap,” J. Statist. Comput. Simul., 58, pp. 99-120 (1997).
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;/"The main and total indices for the SDP meta-
model converge with sample size.

Meta-model results are for Main
SDP + Sobol” estimators built
with sample sizes: N=128,

Total

aA—a A -

Sample Size

|

Sample Size

256, 512, 1024. Yy
Sobol” indices are calculated OS .
. ample Size
with the meta-model at a
set of “untried” points, i.e.,
points not used to build the °3 =
meta-model. v
Both main and total indices ®o o0 w00 Teoo eo0 1080 1200
are well-behaved with Sample Size
respect to convergence.
o X, Init. Right p
The indices from N=256 are
X, Init. Right u

robust to further refinement.

X5 Init. Right y

X, CFL parameter

)

1S 148ty jeuly

0 y31y [eul
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We have some answers to our questions...

e Do these approaches give consistent results, e.q., for rankings?

— In general, the different meta-models are consistent, both in ranking
and magnitude, particularly for main effects (less so for total effects).

e Do these results vary for the different outputs?
— “Well-behaved” outputs (e.g., ¥, and Y;) are quite consistent.

e How to these results depend on the different inputs?
— “Well-behaved” inputs (e.g., X, X,) follow the above pattern.
— Otherinputs (X;, X,) show more variation for SDP and ACOSSO.

— Correct index values can be more challenging to properly calculate
when there are significant interactions among the inputs (e.g., ¥,)

Sandia
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| We have some answers to our questions...

e Do these results “converge”?

— Yes (empirically): more samples — the results “settle down”
— No: the “converged” value might differ from the exact value.

e How to sampling and meta-model results compare?
— In general, these two methods give comparable results.
e Can we distinguish among different meta-models?

— The actual numbers varied slightly, but the rankings are robust.

e How to exact solution results compare to ALEGRA results?
— “Well-behaved” inputs (e.g., X;, X,) follow the above pattern.

----------------------------------------------------------------------------------------------------------

———————————————————————

———————————— -

_________________________

----------------------------------------------------------------------------------------------------------
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> Summary: What did we talk about?
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e Sensitivity Analysis :
— Sobol'/Saltelli estimators of indices from
quasi-random sampling DAKOTA ¢ sk
— Sensitivity analysis using meta-models

e PCE e SDP  + ACOSSO e DACE (GP)
\ J v y,

Y
DAKOTA s Ny

e The Application:

— The specific problem considered—and why
— Inputs, outputs, and what we expected

e Computer Simulations:

— The sensitivity analysis of the simulation model
does not always match that of the exact model

Numerical Model

)
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-~ Conclusions

e We considered real-physics test problem, with an exact sol’n.

e The response surfaces for computed and exact solutions were
compared and exhibited discontinuous behavior.

e Monte Carlo sampling gave bounded convergence
for standard sensitivity measures.

e All meta-models gave consistent main effects index values.

e Greater variability was seen for some outputs with both
“small” and “large” LHS-based indices.

e Differences between the computational model and the
exact model were observed.

e This study led to improvements in DAKOTA algorithmes.
e We will extend this study to consider discrete inputs.
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